





# Oxidative coupling of methane over oxides of alkali earth metals using $N_2O$ as oxidant

E.V. Kondratenko a, N.G. Maksimov b, G.E. Selyutin b, A.G. Anshits b

Department of Chemistry, Krasnoyarsk State Technical University, Kirenskii Str. 26, Krasnoyarsk 660074, Russia
Institute of Chemistry of Natural Organic Materials, K. Marx Str. 42, 660049, Krasnoyarsk 660049, Russia

#### **Abstract**

Using a  $CH_4-O_2$  and a  $CH_4-N_2O$  reaction mixture,  $N_2O$  was shown to be a more active and a more selective oxidant then  $O_2$  when  $CH_4$  conversion was similar for both oxidants. It was established that the defect structure of SrO was changed under catalytic conditions. The participation of defects of SrO in the  $N_2O$  decomposition was proposed. The presence of hydrogen significantly enhances the decomposition of  $N_2O$  and the formation of  $C_2H_6$  over SrO.

#### 1. Introduction

Earlier, Otsuka and Nakajima [1] have found that the oxidative coupling of methane (OCM) over  $Sm_2O_3$  proceeded with high selectivity but low activity in ethane formation using  $N_2O$  as the oxidant. Similar results were obtained by Yamamoto et al. [2] when Li/MgO with a high amount of alkali promoter was used. However, Anshits et al. [3] have also shown that over Li/CaO and Na/CaO catalysts with a low amount of alkali promoter (<2 at.-%) the rates of product formation were greater with  $N_2O$  than with  $O_2$  when the oxidants were compared at the same methane conversion.

Thus it was instructive to study the OCM over SrO when N<sub>2</sub>O was used as an oxidant. It was of particular interest to investigate the structure of the catalysts after treatment by the reaction mixtures.

### 2. Experimental

The SrO catalyst was prepared by calcining the high purity  $SrCO_3$  with oxygen for 2 hours at T=1523 K to remove the carbonates. Catalytic activity was examined at 1023 K in a microcatalytic quartz fixed-bed reactor using the reaction mixtures:  $CH_4:O_2:He=30:15:55$  vol.-% or  $CH_4:N_2O:He=30:30:40$  vol.-%. Gas chromatography was used to analyze the product stream. Separation of the various components was achieved using NaX zeolite and Porapak Q columns. EPR spectra were recorded on a RE 1307 radio-spectrometer at 77 K. Prior to the spectroscopic study the samples were treated under flow conditions at 1023 K, cooled to 77 K and  $\gamma$ -irradiated (3 Mrad).

#### 3. Results and discussion

In this study an attempt was made to compare  $N_2O$  and  $O_2$  as oxidants at a nearly equal level of

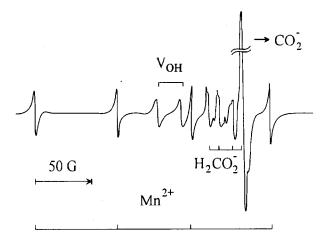



Fig. 1. EPR spectrum of the  $\gamma$ -irradiated SrO after treatment at 1023 K under a CH<sub>4</sub>:N<sub>2</sub>O = 30:10 vol.-% mixture.

CH<sub>4</sub> conversion over SrO. The results obtained may be summarized as follows:

- N<sub>2</sub>O is a more active and selective oxidant when compare with O<sub>2</sub> at 1023 K (the summary activities were  $7.0 * 10^{19}$  and  $1.2 * 10^{19}$  molecular CH<sub>4</sub> \* s<sup>-1</sup> \* m<sup>-2</sup> for CH<sub>4</sub>:N<sub>2</sub>O:He = 30:30:40 and CH<sub>4</sub>:O<sub>2</sub>:He = 30:15:55 vol.-% mixtures, respectively;
- the substitution O<sub>2</sub> by N<sub>2</sub>O results in a decreasing rate of CO formation.

It should be noted that the nature of defects in the SrO lattice is the same after the treatment of the catalyst of both reaction mixtures (Fig. 1).

It may be caused by formation of similar oxygen active species when  $O_2$  and  $N_2O$  are activated. We found that oxygen was poison for the decomposition of  $N_2O$  under OCM conditions. It testifies that the adsorption of  $O_2$  yields the same surface

oxygen species which are formed from  $N_2O$ . For a more detailed understanding of the role of defects formed under OCM reaction, the composition of defects into SrO lattice and rates of  $N_2O$  decomposition were compared. Experimental data are presented in Table 1. One can see that the growth of partial pressure of  $O_2$  results in a decreasing rate of  $N_2O$  decomposition and a concentration of  $V_{OH}$  defects (OH groups stabilized near the cation vacancy). The decomposition of these defects in CaO is accompanied by the formation of anion vacancies [4].

$$([OH]^{-})_{s} + ([OH]^{-})_{s} \rightarrow (O_{2}^{2-})_{s} + H_{2}$$
 (1)

$$(O_2^{2-})_s \rightarrow O + (O_{2-})_s + ([\ ])_s$$
 (2)

where index 's' means surface; [ ] anion vacancy.

In our case, such a situation seems to be realized, because  $T_d(Sr(OH)_2)$  is 500°C. Therefore, the higher the concentration of hydroxyl groups in SrO, the higher the concentration of anion vacancies, which are necessary for  $N_2O$  decomposition. For all this the concentration of  $H_2CO_2$  defects increased when the concentration of  $V_{OH}$  centres decreased.

To verify our proposition concerning the role of hydroxyl defects or anion vacancies for  $N_2O$  decomposition over SrO, the influence of hydrogen on the rate of  $N_2O$  decomposition was studied. It is well known that water or hydrogen can dissociatively be trapped in oxide lattice to form OH defects. Experiments on varying quantities (0–10 vol.-%) of hydrogen added to  $N_2O$  and  $CH_4-N_2O$ 

Table 1 The rate of  $N_2O$  decomposition versus  $V_{OH}$  and  $H_2CO_2$  defects concentration.

| Reaction mixture, vol. %       | W, 10 <sup>18</sup> molecula N <sub>2</sub> O*s <sup>-1</sup> *m <sup>-2</sup> | Concentration of defects, au |                                  |
|--------------------------------|--------------------------------------------------------------------------------|------------------------------|----------------------------------|
|                                |                                                                                | V <sub>OH</sub>              | H <sub>2</sub> CO <sub>2</sub> - |
| $CH_4: N_2O = 30:10$           | 50                                                                             | 4.7                          | 1.1                              |
| $CH_4: N_2O: O_2 = 30: 10:2$   | 36                                                                             | 2.7                          | 1.4                              |
| $CH_4: N_2O: O_2 = 30: 10: 15$ | 16                                                                             | 0.1                          | . 3.0                            |

Table 2 The rates of ethane formation ( $C_2H_6$ ) and  $N_2O$  decomposition ( $N_2O$ ) over SrO versus partial pressure of hydrogen (T=1023 K)

| Reaction mixtures, vol. %.            | W, $10^{18}$ molecula CH <sub>4</sub> or N <sub>2</sub> O*s <sup>-1</sup> *m <sup>-2</sup> |                 |                |  |
|---------------------------------------|--------------------------------------------------------------------------------------------|-----------------|----------------|--|
|                                       | C <sub>2</sub> H <sub>6</sub>                                                              | CO <sub>2</sub> | N <sub>2</sub> |  |
| $N_2O: He = 10:90$                    | -                                                                                          | -               | 57             |  |
| $N_2O:H_2:He = 10:1:89$               | -                                                                                          | -               | 150            |  |
| $N_2O: H_2: He = 10: 10: 80$          | -                                                                                          | -               | 300            |  |
| $CH_4$ : $N_2O$ : $He = 30:10:60$     | 35                                                                                         | 1               | 75             |  |
| $CH_4: N_2O: H_2: He = 30: 10: 2: 58$ | 140                                                                                        | 1               | 150            |  |

reaction mixtures were carried out (Table 2). The addition of hydrogen to the  $CH_4$ – $N_2O$  reaction mixture resulted in increasing the rates of  $N_2O$  decomposition and  $C_2H_6$  formation, but did not influenced the rate of  $CO_2$  formation. Strontium oxide is partially converted to  $SrCO_3$  under the reaction conditions. In the OCM condition, hydrogen can give oxygen vacancies through the reaction of the reduction of strontium carbonate.

#### 4. Conclusion

It was established that replacement of  $O_2$  with  $N_2O$  resulted in increasing the selectivity and activity of formation of  $C_2$  products when  $CH_4$  conversion was similar for both oxidants. The reaction mixture ( $CH_4$ – $O_2$  and  $CH_4$ – $N_2O$ ) influenced the defect structure of SrO. The catalytic

effect of hydrogen on the OCM reaction was established when N<sub>2</sub>O was used as oxidant.

## 5. Acknowledgement

The research described in this publication was made possible in part by Grant No. RKM000 from the International Science Foundation.

#### 6. References

- K. Otsuka and T. Nakajima, Inorg. Chim. Acta, 120 (1986) L27.
- [2] H.Y. Yamamoto, H.Y. Chu, M. Xu, C. Shi and J.H. Lunsford, J.Catal., 142 (1993) 325.
- [3] A.G. Anshits, V.G. Roguleva and E.V. Kondratenko, in V. Corberan and S. Belon (Editors), (Studies in Surface Science and Catalysis, Vol. 82), Elsevier, Amsterdam, 1994, pp. 337–334.
- [4] F. Freund, Phys. Chem. Miner., 15 (1987) 1.